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ABSTRACT 

Semisimple, semiperfect, and perfect rings are characterized by quasiprojective 
modules and quasiprojective covers over them. 

In this paper R will always denote art associative ring with 1 and all modules 

and morphisms will be taken from the category of unitary left R-modules. 

"Semi-simple" will mean "Jacobson semisimple and artinian.' 

A module Q is called quasiprojective iff every diagram 

Q 

Q /~> >0 

can be embedded in a commutative diagram 

Q 

Q > M  - 7 0  

Such modules were first studied by Miyashita [6] and by Wu and Jans [8]. 

Projective modules are clearly quasiprojective, as are completely reducible 

modules. 

* The results in this note are taken from the author 's doctoral dissertation, being written at the 
Hebrew University of Jerusalem under the direction of Professor S. A. Amitsur. 
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An epimorphism ~: P ~ M is a projective cover of the module M whenever P 

is projective and ker (~) is small in P (A is small in B iffA + C = B implies C = B). 

In an analogous manner Wu and Jans defined a quasiprojective cover to be an 

epimorphism f l : Q - *  M such that (i) Q is quasiprojective; (ii) ker(fl) is small 

in Q; and (iii) Q/Tis  not quasiprojective for all 0 ~ T ~ ker(fl). 

1. Semisimple rings. We will first characterize semisimple rings using quasi- 

projectives and dualizing the result of Faith and Utumi [-2] for quasi-injectives. 

LEMMA 1.1. Let P be projective and Q quasiprojective. Then a sufficient 

condition for an exact sequence 0 ~ K ~ P ~ Q --, 0 to split is that P • Q 

be quasiprojective. 

PROOF. Assume P @ Q is quasiprojective and define epimorphisms a, fl: 

P • Q -~ Q by ~(p, q)~ = q, (p, q)fl = p).. By quasiprojectivity there then exists 

an endomorphism 0 of P • Q making the diagram 

P G Q  

P ~ ) Q  > Q ~ 0 

commute. Define 7: Q ~ P by q7 = (0, q)Orc, where •: P @ Q ~ P is the canonical 

projection. Then for all q e Q, q72 = (0, q)Orc2 = (0, q)Ofl = (0, q)ct = q. Thus 

72 is the identity on Q and so the sequence splits. 

COROLLARY 1.2. A sufficient condition for R to be semisimple is that R • M 

be quasiprojective for every simple module M .  

PROOF. If M is simple then there exists an exact sequence 0 --. K ~ R ~ M ~ 0 

which splits by Lemma 1.1 (simple modules being quasiprojective). Therefore 

every simple module is projective which implies that R is semisimple. 

THEOREM 1.3. The following are equivalent: 

(1) R is semisimple. 

(2) The class of quasiprojective modules is closed under finite direct sums. 

(3) Every module is quasiprojective. 

(4) Every finitely-generated module is quasiprojective. 

PROOF. Since (1) implies that every module is projective, (1) implies all of 
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the other statements. ByCorollary 1.2, (2) and (4) imply (1). (3) implies (4) trivially. 

2. Semiperfeet rings, Bass [1] defines a ring to be semiperfect if and only if 

every finitely-generated left module over it has a projective cover. 

LEMMA 2.1. I f  ct:P -+ M is a projective cover then ~: P / T  ~ M is a quasi- 

projective cover, where T is the (unique) maximal  submodule of ker(~) stable 

under endomorphisms of P and ~ is canonically induced by ct. 

PROOF. See [8], Proposition 2.6. 

THEOREM 2.2. R is semiperfect i f f  every finitely-generated module has a 

quasiprojective cover. 

PROOF. Sufficiency follows directly from Lemma 2.1. Hence we have to show 

necessity. Let M be a finitely-generated module and let 0 ~ K o  F L M ~ 0 be 

exact with F finitely-generated and free. By (2) F @ M has a quasiprojective 

cover ~: Q ~ F @ M.  Denote the canonical projection F G M ~ F by n.  Since 

F is projective the exact sequence 0 ~ L ~  Q "L~ F ~ 0 splits (L = ker(~n)) 

and so there exists 2: F ~ Q such that 2~n = ide, Q = F2 @ L. Without loss of 

generality we can therefore take Q = F • L. 

Let ~' be the restriction o f~  to L; then ~' is an epimorphism onto M.  We claim 

that in fact ~': L ~ M is a projective cover. Certainly ker(~') is small in L since, 

if we suppose k e r ( ~ ' ) + A  = L, then A = F • L =  [ F @ A ] + k e r ( c t )  so 

F ® A  = Q = F 0 )  L, i m p l y i n g A = L .  

By the projectivity of F ,  there exists a homornorphism fl: F ~ L making the 

diagram 

/ F 

YI' 
~r 

L > M , . > 0  

commute. Since y is an epimorphism, L = im(fl) + ker(~') --- im(fl) by the smallness 

of ker(~') and so fl is an epimorphism. By Lemma 1.1 the sequence 0 ~ ker(fl) 

F ~ L ~ 0 splits, proving L isomorphic to a direct summand of F and hence 

projective. 

Note that in the proof above we made no use of the fact that M was finitely- 
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generated other than to obtain a quasiprojective cover and that we did not make 

use of property (iii) of the definition of quasiprojective cover. 

3, Perfect rings. A ring R is left perfect if and only if every left R-module 

has a projective cover. Bass ([1], Theorem P) proves several conditions equivalent 

to left perfectness, among them: (a) R satisfies the descending chain condition 

on principal right ideals; (b) Every flat module is projective. 

THEOREM 3.1. The following are equivalent; 

(1) R is left perfect. 

(2) Every module has a quasiprojective cover. 

(3) Every flat module is quasiprojective. 

PROOF. (1) =~ (2) follows from Lemma 2.1 and the proof of (2) => (1) is identical 

with that of (2) =~ (1) of Theorem 2.2. (1) => (3) follows, as noted, from Bass' 

Theorem P. We are thus left to show (3) => (1). 

By Theorem P we have to show that R satisfies the descending chain condition 

on principal right ideals or equivalently that for every sequence (a~) of elements 

of R there exists an m such that a~ . . . . .  a,,R = al . . . . .  a,n+k R for all k __> 0. 

Let F = @,oo__~ Rx, be a countably-generated free module and define 

G, = @ ~ = i R ( x i - a i x i + l )  (n = 1,2,-.., oo) Then F/Gn is free (hence flat) for 

all n < oo and so F/Goo = lira_. F/G, is the direct limit of flat modules and so is 

flat. F itself is flat and hence so is F (i) F/G~.  By (3) F ® F/G~o is quasiprojective 

and so by Lemma 1.1, G~ is a direct summand of F .  This suffices to prove what 

we need by Lemma 1.3 of [1]. 
In closing we should note a result due to Sandomierski [7]: R is left perfect 

[semiperfect] iff every completely reducible [simple] module has a projective 

cover. Since simple and completely reducible modules are quasiprojective, this 

shows in particular that R is left perfect [semiperfect] iff every quasiprojective 

[finitely-generated quasiprojective] module has a projective cover. 
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